Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

نویسندگان

  • Clemens Möller
  • Harry Witchel
چکیده

The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry's need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and torsades de pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the "gold-standard" for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive) for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology - much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel screening techniques for ion channel targeting drugs

Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophy...

متن کامل

A web portal for in-silico action potential predictions

INTRODUCTION Multiple cardiac ion channels are prone to block by pharmaceutical compounds, and this can have large implications for cardiac safety. The effect of a compound on individual ion currents can now be measured in automated patch clamp screening assays. In-silico action potential models are proposed as one way of predicting the integrated compound effects on whole-cell electrophysiolog...

متن کامل

Variability in high-throughput ion-channel screening data and consequences for cardiac safety assessment

INTRODUCTION Unwanted drug interactions with ionic currents in the heart can lead to an increased pro-arrhythmic risk to patients in the clinic. It is therefore a priority for safety pharmacology teams to detect block of cardiac ion channels, and new technologies have enabled the development of automated and high-throughput screening assays using cell lines. As a result of screening multiple io...

متن کامل

Early identification of hERG liability in drug discovery programs by automated patch clamp

Blockade of the cardiac ion channel coded by human ether-à-gogo-related gene (hERG) can lead to cardiac arrhythmia, which has become a major concern in drug discovery and development. Automated electrophysiological patch clamp allows assessment of hERG channel effects early in drug development to aid medicinal chemistry programs and has become routine in pharmaceutical companies. However, a num...

متن کامل

Application of cardiac electrophysiology simulations to pro-arrhythmic safety testing

Concerns over cardiac side effects are the largest single cause of compound attrition during pharmaceutical drug development. For a number of years, biophysically detailed mathematical models of cardiac electrical activity have been used to explore how a compound, interfering with specific ion-channel function, may explain effects at the cell-, tissue- and organ-scales. With the advent of high-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011